Online Monotone Optimization
نویسندگان
چکیده
This paper presents a new framework for analyzing and designing noregret algorithms for dynamic (possibly adversarial) systems. The proposed framework generalizes the popular online convex optimization framework and extends it to its natural limit allowing it to capture a notion of regret that is intuitive for more general problems such as those encountered in game theory and variational inequalities. The framework hinges on a special choice of a system-wide loss function we have developed. Using this framework, we prove that a simple update scheme provides a no-regret algorithm for monotone systems. While previous results in game theory prove individual agents can enjoy unilateral no-regret guarantees, our result proves monotonicity sufficient for guaranteeing no-regret when considering the adjustments of multiple agent strategies in parallel. Furthermore, to our knowledge, this is the first framework to provide a suitable notion of regret for variational inequalities. Most importantly, our proposed framework ensures monotonicity a sufficient condition for employing multiple online learners safely in parallel. 0.
منابع مشابه
Worst Case Competitive Analysis of Online Algorithms for Conic Optimization
Online optimization covers problems such as online resource allocation, online bipartite matching, adwords (a central problem in e-commerce and advertising), and adwords with separable concave returns. We analyze the worst case competitive ratio of two primal-dual algorithms for a class of online convex (conic) optimization problems that contains the previous examples as special cases defined o...
متن کاملDesigning smoothing functions for improved worst-case competitive ratio in online optimization
Online optimization covers problems such as online resource allocation, online bipartite matching, adwords (a central problem in e-commerce and advertising), and adwords with separable concave returns. We analyze the worst case competitive ratio of two primal-dual algorithms for a class of online convex (conic) optimization problems that contains the previous examples as special cases defined o...
متن کاملOnline Learning of Assignments that Maximize Submodular Functions
Which ads should we display in sponsored search in order to maximize our revenue? How should we dynamically rank information sources to maximize value of information? These applications exhibit strong diminishing returns: Selection of redundant ads and information sources decreases their marginal utility. We show that these and other problems can be formalized as repeatedly selecting an assignm...
متن کاملOnline Learning of Assignments
Which ads should we display in sponsored search in order to maximize our revenue? How should we dynamically rank information sources to maximize the value of the ranking? These applications exhibit strong diminishing returns: Redundancy decreases the marginal utility of each ad or information source. We show that these and other problems can be formalized as repeatedly selecting an assignment o...
متن کاملOnline Submodular Maximization under a Matroid Constraint with Application to Learning Assignments
Which ads should we display in sponsored search in order to maximize our revenue? How should we dynamically rank information sources to maximize the value of the ranking? These applications exhibit strong diminishing returns: Redundancy decreases the marginal utility of each ad or information source. We show that these and other problems can be formalized as repeatedly selecting an assignment o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.07888 شماره
صفحات -
تاریخ انتشار 2016